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ACC'’s impact on

mobility & safety

Does it help smooth traffic
congestion?

* Does it contribute to rear-end
collisions?

« Other safety limitations



Why does ACC/car-following affect mobility? String stability!
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Our experiments on ACC’s empirical features

Boston, MA. Feb 2020 Speed, position data Atlanta, GA, Nov 2021

worldwide experiments have reported the same finding:

European
Commission




Empirical finding: ACC can be even worse than human

Recent worldwide experiments (Gunter 2020, Makridis 2020, Shi 2021, Li 2021..) have shown market
ACC systems are string unstable in most cases, which can be even worse than human drivers.
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ACC does not have pre-emption
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Platoon test of Tesla ACC

Anticipative/pre-emptive driving can smooth traffic congestion and improve
safety by seeing further and reacting earlier




Safety: near-collision approaching to stopped cars
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Quick summary: ACC’s impact

ACC can cause more congestion by amplifying traffic oscillations

While causing more congestion, it also increases risks of rear-head
collision on highway, especially for vehicles at the back of a long platoon

ACC needs connectivity to enhance pre-emptive driving, which has the
potential to increase mobility, safety and energy

Current radar technology is not ready, safety issues exist.




Lateral: LKA’s safety

 Does it center in the lane?

 Are current lane markings
ready?

* Does weather/lighting affect?

 Implications for geometry
design and road maintenance
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Our LKA road experiment:

» A camera device that detects lane lines and vehicles
* Vehicle CAN-bus message, variables in stock LKAS
» Rental vehicles, in Tampa and Orlando




Testing device and what we get
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* Left and right lane line position
» Lead vehicle distance and speed
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Does LKA system really center the car?

* Metric include center deviation
from vision estimation

* The steering angle can be
derived from vehicle CAN
messages

* |t turns out, the centering
performance mainly depends
on road infrastructure, weather
and lightning and vehicle
speeds.
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Comparing centering error on concrete/asphalt
pavement

Distribution of Lateral Displacement
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Lane marking not detectable: probability

Frame of interest at 4312 s
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» Contrast due to sunlight 100088
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Lane markings not detectable
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OP has better detection capabilities than stock LKA
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Weather: heavy rain that obscures visibility

Frame of interest at 850.5 s
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Implications for speed limits & geometry design
* LKA has a torque limit
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Implications for design of the transition curve

On the transition segment to a curve, where the radius changes with position,
we have
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Note that here the radius is decreasing, where R'(z) < 0. It means that
when the transition is more rapid, the required torque rate gets larger. We can
also see that deceleration would help reduce the increase of torque.

Let’s ignore acceleration and roll, we have some design principle that can be
applied to the transition curve before a circular curve with radius R.
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« Make sure the transition curve geometry does not require a

torque rate exceeding its limit



Relationship between center error and curvature
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* Positive curvature (right)
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 But they are not symmetric
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Uncertain Future of EVs: New Perspectives

« Opportunities: EVs’ potential to improve traffic capacity

« Challenges: energy saving (regen braking) can do more harm than good
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One-pedal driving can deteriorate traffic
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Cons: EV drivers prioritize mileage over ...

* One-pedal driving

» Auto regen

* The oscillation it may cause

 Sacrifice traffic (system) mobility for a car’s (individual) energy



EV does not cruise, causing more oscillations
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A glimpse into auto-regen bahaviors

Auto Regen Brake
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« Strong regen braking causes spikes in speed profiles
* Actually, the regen selects fixed deceleration values
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* Regen braking has

different levels from
weak to strong

* Intriguingly, those

pre-defined regen
braking levels use
certain fixed
decelerations, not
naturalistic.
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