Using Pivot Tables

[1]:
import transportation_tutorials as tt
import pandas as pd
import numpy as np

Questions

  1. Within the Jupiter study area, what is the average distance for bike tours to work? (Hint: It is 4.03 miles)
  2. What tour purpose has the highest average tour distance? (Hint: Work tours)
  3. What is the median distance of walking for all tour purposes? (Hint: 0.548 miles)

Data

To answer the questions, use the following data:

[11]:
tour = pd.read_csv(tt.data('SERPM8-BASE2015-TOURS'))
tour.head()
[11]:
hh_id person_id person_num person_type tour_id tour_category tour_purpose orig_mgra dest_mgra start_period end_period tour_mode tour_distance tour_time atWork_freq num_ob_stops num_ib_stops out_btap out_atap in_btap in_atap util_1 util_2 util_3 util_4 util_5 util_6 util_7 util_8 util_9 util_10 util_11 util_12 util_13 util_14 util_15 util_16 util_17 util_18 util_19 util_20 prob_1 prob_2 prob_3 prob_4 prob_5 prob_6 prob_7 prob_8 prob_9 prob_10 prob_11 prob_12 prob_13 prob_14 prob_15 prob_16 prob_17 prob_18 prob_19 prob_20
0 1690841 4502948 1 1 0 MANDATORY Work 7736 9290 8 29 6 22.261 32.311001 6 0 0 0 0 0 0 -1.395076 -998.970825 -2.360061 -2.051275 -2.361161 -1.139561 -999.0 -999.0 -996.401001 -997.447021 -996.244019 -996.244019 -997.664978 -999.883789 -999.883789 -1001.335999 -999.883789 -999.883789 -1001.335999 -999.0 0.340576 0.0 0.000096 0.091587 0.000000 0.567742 0.0 0.0 0.000000 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1690841 4502948 1 1 1 AT_WORK Work-Based 9290 7980 13 14 1 1.910 4.752000 0 0 0 0 0 0 0 -0.259837 -998.668518 -0.758937 -999.608398 -0.687137 -999.858276 -999.0 -999.0 -5.843162 -28.534241 -8.014107 -1024.000000 -1024.000000 -30.581329 -1024.000000 -32.709736 -30.581329 -1024.000000 -32.709736 -999.0 0.555677 0.0 0.204790 0.000000 0.236415 0.000000 0.0 0.0 0.002799 0.0 0.000319 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1690841 4502948 1 1 2 AT_WORK Work-Based 9290 10608 19 23 3 1.357 3.777000 0 0 0 0 0 0 0 -0.195235 -998.668518 -0.694335 -999.608398 -0.622535 -999.858276 -999.0 -999.0 -4.755019 -28.262205 -8.655456 -1024.000000 -1024.000000 -33.426655 -1024.000000 -31.728464 -33.426655 -1024.000000 -31.728464 -999.0 0.553007 0.0 0.203806 0.000000 0.235279 0.000000 0.0 0.0 0.007751 0.0 0.000157 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1690841 4502949 2 2 0 MANDATORY Work 7736 8289 27 30 4 30.930 55.431000 1 1 0 0 0 0 0 -2.548089 -998.970825 -3.130183 -1.918921 -3.237083 -1.397364 -999.0 -999.0 -996.401001 -997.447021 -996.244019 -996.244019 -997.664978 -999.883789 -999.883789 -1001.335999 -999.883789 -999.883789 -1001.335999 -999.0 0.068926 0.0 0.000000 0.242591 0.000000 0.688483 0.0 0.0 0.000000 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 1690841 4502949 2 2 1 MANDATORY Work 7736 8289 31 36 4 30.930 55.431000 1 0 0 0 0 0 0 -2.493357 -998.970825 -3.075933 -1.860832 -3.182833 -1.339275 -999.0 -999.0 -996.401001 -997.447021 -996.244019 -996.244019 -997.664978 -999.883789 -999.883789 -1001.335999 -999.883789 -999.883789 -1001.335999 -999.0 0.068497 0.0 0.000000 0.242703 0.000000 0.688801 0.0 0.0 0.000000 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[13]:
tour_mode_dict = {
    1: "DRIVEALONEFREE",
    2: "DRIVEALONEPAY",
    3: "SHARED2GP",
    4: "SHARED2PAY",
    5: "SHARED3GP",
    6: "SHARED3PAY",
    7: "TNCALONE",
    8: "TNCSHARED",
    9: "WALK",
    10: "BIKE",
    11: "WALK_MIX",
    12: "WALK_PRMW",
    13: "WALK_PRMD",
    14: "PNR_MIX",
    15: "PNR_PRMW",
    16: "PNR_PRMD",
    17: "KNR_MIX",
    18: "KNR_PRMW",
    19: "KNR_PRMD",
    20: "SCHBUS",
}